
1

Introduction to Bash Shell

What is Shell?

• The shell is a command interpreter.
• It is the layer between the operating system

kernel and the user.

2

Some Special characters used in
shell scripts

• #:Comments
• ~:home directory

Invoking the script

• The first line must be “#!/bin/bash”.
– setup the shell path

• chmod u+x scriptname (gives only the
script owner execute permission)

• ./scripname

3

Some Internal Commands and
Builtins

• getopts:
– parses command line arguments passed to the script.

• exit:
– Unconditionally terminates a script

• set:
– changes the value of internal script variables.

• read:
– Reads" the value of a variable from stdin
– also "read" its variable value from a file redirected to stdin

• wait:
– Stop script execution until all jobs running in background have

terminated

Some Internal Commands and
Builtins (cont.)

• grep:
– grep pattern file

– search the files file, etc. for occurrences of pattern

• expr:
– evaluates the arguments according to the operation

given
– y=`expr $y + 1` (same as y=$(($y+1))

4

I/O Redirection

• >: Redirect stdout to a file, Creates the file if not
present, otherwise overwrites it

• < : Accept input from a file.
• >>: Creates the file if not present, otherwise

appends to it.
• <<:

– Forces the input to a command to be the shell’s input,
which until there is a line that contains only label.

– cat >> mshfile << .
• |:pipe, similar to ">",

if

if [condition] then
command1

elif # Same as else if
then

command1
else
default-command

fi

5

case

x=5
case $x in

0) echo "Value of x is 0."
;

5) echo "Value of x is 5."
;

9) echo "Value of x is 9."
;

*) echo "Unrecognized value."
esac
done

Loops

• for [arg] in [list];
do
command
done

• while [condition];
do
�ccommand...
done

6

Loops (cont.)

• break, continue
– break command terminates the loop
– continue causes a jump to the next iteration of the

loop

Introduction to Variables

• $: variable substitution
– If variable1 is the name of a variable, then

$variable1 is a reference to its value.

7

Pattern Matching

• ${variable#pattern}
• ${variable##pattern}
• ${variable%pattern}
• ${variable%%pattern}

Examples of Pattern Matching

x=/home/cam/book/long.file.name
echo ${x#/*/}
echo ${x##/*/}
echo ${x%.*}
echo ${x%%.*}

cam/book/long.file.name
long.file.name
/home/cam/book/long.file
/home/cam/book/long

8

Aliases

• avoiding typing a long command sequence
• Ex: alias lm="ls -l | more"

Array

• Declare:
– declare -a array_name

• To dereference (find the contents of) an array
variable, use curly bracket notation, that is,
${ array[xx]}

• refers to all the elements of the array
– ${array_name[@]} or ${array_name[*]}

• get a count of the number of elements in an array
– ${#array_name[@]} or ${#array_name[*]}

9

Functions

• Type
– function function-name {

command...
}

– function-name () {
command...
}

• Local variables in function:
– Declare: local var_name

• functions may have arguments
– function-name $arg1 $arg2

Positional Parameters

• $1, $2, $3 … ..
• $0 is the name of the script.
• The variable $# holds the number of

positional parameter.

10

Positional Parameters in
Functions

• $1, $2, $3… .
• Not from $0

Files

• /etc/profile
– systemwide defaults, mostly setting the environment

• /etc/bashrc
– systemwide functions and and aliases for Bash

• $HOME/.bash_profile
– user-specific Bash environmental default settings,

found in each user's home directory
• $HOME/.bashrc

– user-specific Bash init file, found in each user's home
directory

11

Debugging

• The Bash shell contains no debugger, nor even
any debugging-specific commands or constructs.

• The simplest debugging aid is the output statement,
echo .

• Set option
– -n: Don’t run command; check for syntax error only
– -v: Echo commands before running them
– -x: Echo commands after command-line processing

